Role of mitogen-activated protein kinase in Zn-BC-AM PDT-induced apoptosis in nasopharyngeal carcinoma cells.

نویسندگان

  • H K Koon
  • P S Chan
  • Z G Wu
  • R N S Wong
  • M L Lung
  • C K Chang
  • N K Mak
چکیده

Photodynamic therapy (PDT) with a recently developed photosensitizer Zn-BC-AM was found to effectively induce apoptosis in a well-differentiated nasopharyngeal carcinoma (NPC) HK-1 cell line. Sustained activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK) as well as a transient increase in activation of extracellular signal-regulated kinase (ERK) were observed immediately after Zn-BC-AM PDT. A commonly used p38 MAPK/JNK pharmacological inhibitor PD169316 was found to reduce PDT-induced apoptosis of HK-1 cells. PD169316 also prevented the loss of Bcl-2 and Bcl-xL in PDT-treated HK-1 cells. However, inhibition of JNK with SP600125 had no effect on Zn-BC-AM PDT-induced apoptosis while inhibition of ERK with PD98059 or p38 MAPK with SB203580 significantly increased Zn-BC-AM PDT-induced apoptosis. Further study showed that knockdown of the p38beta isoform with siRNA also increased Zn-BC-AM PDT-induced apoptosis, indicating that the anti-apoptotic effect of PD169316 in PDT-treated HK-1 cells was probably independent of p38 MAPK or JNK activation. Taken together, the results suggest that inhibition of p38beta and ERK may enhance the therapeutic efficacy of Zn-BC-AM PDT on NPC cells. It should be noted that data only based on the use of PD169316 should be interpreted in caution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted inhibition of the EGFR pathways enhances Zn-BC-AM PDT-induced apoptosis in well-differentiated nasopharyngeal carcinoma cells.

Epidermal growth factor receptor (EGFR), a receptor often expressed in nasopharyngeal carcinoma (NPC) cells, is one of the recently identified molecular targets in cancer treatment. In the present study, the effects of combined treatment of Zn-BC-AM PDT with an EGFR inhibitor AG1478 were investigated. Well-differentiated NPC HK-1 cells were subjected to PDT with 1 microM of Zn-BC-AM and were ir...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy.

Photodynamic therapy (PDT) is a cancer therapy in which a photosensitizer selectively accumulates in tumor cells and is subsequently activated by light of a specific wavelength. The activation of the photosensitizer leads to cytotoxic photoproducts that result in tumor regression. PDT can lead to several cellular responses including cell cycle arrest, necrosis, and apoptosis, as well as trigger...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell biochemistry and function

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 2010